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When a drop �or gas bubble� is placed in a strong viscous flow �e.g., a shear flow�, it develops very sharp tips
at its ends. Sharp tips are also formed when a viscous fluid is withdrawn from the neighborhood of its interface
with the ambient air or with another fluid �selective withdrawal�. However, it is observed frequently that there
exists a critical flow strength above which the drop transitions toward a “jetting state” in which a jet comes out
from the tip. In this paper, we look numerically for stationary drop shapes, both globally and close to the tip,
which we study with very high resolution. To this end we use a boundary integral method to solve the
axisymmetric flow equations for arbitrary viscosity ratios in the inertialess �Stokes� limit. Stationary states are
solved for using Newton’s method. This permits us to find both stable and unstable steady states and to
investigate the nature of the jetting transition. The critical parameters for this transition are in reasonable
agreement with slender-body theory. Excellent agreement is found with our earlier experiments in the selective
withdrawal geometry �S. Courrech du Pont and J. Eggers, Phys. Rev. Lett. 96, 034501 �2006��, for which the
viscosity of the phase inside the tip is negligible. We describe a scale invariance of the experimental interface
profiles away from the tip. Then we investigate the highly curved tip region not considered previously with
comparable precision. We find that the shape near the tip is universal, i.e., independent of the outer flow and
of the geometry of the system �drop or selective withdrawal�. While the tip curvature becomes extremely large,
it always remains finite if surface tension is present.
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I. INTRODUCTION

Free surfaces are likely to develop very sharp tips if they
are subject to a strong external flow. This was first demon-
strated by Taylor �1�, by placing a liquid drop of small vis-
cosity in a viscous flow produced by counter-rotating rollers,
stretching the drop in an elongational flow; see Fig. 1. At its
ends, the drop develops tips which become quite sharp, yet it
is not known on which scale the tip is rounded, if at all �3�.
In the selective withdrawal experiment on the right-hand side
of Fig. 1, the free surface is deformed by a sink flow and
again a sharp tip forms. Thus there exists a generic mecha-
nism by which very small scales are produced, owing to the
nonlinear properties of the hydrodynamic equations, without
a need for microfabrication. If the tip becomes unstable it
may produce extremely thin jets �4–8�, which have numer-
ous microfluidic applications �4,9,10�.

A variety of other free-surface flows also develop singu-
larities under sufficiently strong forcing. For example, two-
dimensional versions of the Stokes flows considered here
develop a cusp, but which is regularized by surface tension
�11�. The same type of cusp is found in Hele-Shaw flow �12�
and numerical solutions suggest regularization by surface
tension �13�. An axisymmetric analog of the Hele-Shaw sys-
tem �the porous medium equation� was studied in �14�, giv-
ing similar results. Finally, cusps are found for inviscid po-
tential flow with a free surface �15,16� but vanishing surface
tension. In the following, we will make frequent compari-
sons between the three-dimensional axisymmetric Stokes
flow studied in the present paper and its two-dimensional
counterpart. While there are some superficial similarities, the
scaling and stability properties of the two problems are rather
different.

A theory for the stationary shape of drops and their tran-
sition toward a jetting state was developed by Taylor �17�,
who also provided the first experimental observations �1�,
and refers to the phenomenon as “tip streaming.” The basic
idea, worked out in much greater detail in subsequent papers
�18–21�, is that the drop can be represented as a line distri-
bution of two-dimensional sources, which can be computed
using the slenderness of the drop as a small parameter. It is
straightforward to add the effect of the fluid inside the drop,
in the limit that its viscosity is small compared to that of the
exterior �17�. As a result, pressure builds up near the end of
the drop, until a closed shape can no longer be sustained. The
smaller the viscosity, the stronger the flow required for the
drop to burst. It was one of the main surprises of the experi-
ment �5� in the selective withdrawal geometry that this tran-
sition was found to be almost unaffected by the viscosity
ratio �6� contradicting the above theoretical ideas. Numerical
simulations of pointed drop shapes have been around for a
long time �8,22–25�. However, past studies were not able to
resolve the tip region with an accuracy sufficient to address
the above issues.

In the next section, we describe in detail the boundary
integral code �26� that permits us to calculate stable and un-
stable stationary states of free surfaces in an external flow in
the Stokes limit. Special care is taken to resolve the ex-
tremely high curvatures that occur on the symmetry axis of
both flows. In the third section we describe Taylor’s classical
theory for the shape and stability of drops in various external
flow fields and compare to numerical simulations. In the fol-
lowing section we explain the modifications to the code nec-
essary to describe the selective withdrawal geometry and in-
vestigate tip stability numerically. In the fifth section we
present a detailed comparison to previous selective with-
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drawal experiments, both for liquid-liquid and liquid-gas
systems, and find excellent agreement, except for the stabil-
ity properties observed in �6�, as mentioned above. We also
describe a scaling property of experimentally measured pro-
files, which relates profiles at different flow strengths and
permits to make contact with Taylor’s slender-body theory.
In the penultimate section we study the tip region and show
that it is described by scaling laws which hold for both drops
and for selective withdrawal. In the final discussion we point
out various unresolved problems.

II. NUMERICS

A. Boundary integral

We confine ourselves entirely to a low Reynolds number
�Stokes� regime, where inertial effects can be disregarded.
This is a good approximation for many experiments, both on
drops and in the viscous withdrawal geometry. The most
effective numerical description of such a system is that of the
boundary integral method �23,27�, but other methods, such
as an accurate boundary element code �8�, have also been
considered for similar problems. Our aim is to provide a
detailed numerical description of the highly curved tip re-
gion. The key ingredients of our numerical code are the fol-
lowing:

�1� a high order approximation of the free interface;
�2� subtraction of singularities;
�3� a highly nonuniform grid, which permits very high

resolution near tips;
�4� a Newton scheme that assures second-order conver-

gence toward the fixed point solution;
�5� efficient continuation as function of a variety of pa-

rameters such as the capillary number or the total drop
length.

In previous work on pointed drops �28�, a very low reso-
lution was used and no effort was made to resolve the tip. In
�23�, more points are used to represent the surface, but the tip
resolution remains limited to a maximum reported tip curva-
ture of 102 in units of the drop radius. By contrast, the
present code resolves tip curvatures of up to 109, with very
little error as measured by the residual normal velocity of the
interface.

Let us formulate the problem first for the case of a drop in
an external flow field �3�. Let the �time-dependent� surface of
the drop be S�t�, the viscosity of the exterior fluid �, and the
viscosity of the drop ��. The velocity field can be expressed
as an integral equation involving the surface forces ��n,
where n is the normal vector directed into the outer fluid and
�=� ·n is the curvature of the interface. We make the veloc-
ity dimensionless with respect to the capillary velocity � /�,
all lengths with respect to the unperturbed drop radius R, and
times with respect to the corresponding time scale �=R� /�.

Calculation of the evolution of the interface S�t� requires
only the interfacial velocity, which is given by the integral
equation �27�

�1 + ��
2

u�x1� = − �
S

�J · nd�2 + �� − 1��
S

u · K · nd�2

+ u�ext��x1� . �1�

The integral kernels J and K �29� describe the response of
the flow field and of the stress tensor to a point forcing:

J�r� =
1

8�
� I

r
+

rr

r3 �, K�r� = −
3

4�

rrr

r5 , r = x1 − x2.

�2�

The points x1 and x2 both lie on S�t� and d�2 denotes a
surface area element at position x2. The first term on the
right-hand side of Eq. �1� represents the driving by the sur-
face forces, the second accounts for the difference in viscos-
ity between the fluids, and the third comes from the external
flow. The problem is closed by requiring that any material
marker m with position x1 on the surface moves according to

�tx1�m� = u�x1� . �3�

B. Subtraction of singularities

All problems considered in this paper possess cylindrical
symmetry, so the azimuthal integrations in Eq. �1� can be
performed analytically; see �26� for the explicit expressions
in terms of elliptic integrals. The remaining numerical task is
to perform a line integral over the contour of the drop and to

1 mm

FIG. 1. On the left, a drop of low-viscosity fluid �a mixture of CCl4 and paraffin� is stretched in Taylor’s “four-roller” machine �1�, filled
with viscous fluid �golden syrup mixed with water�. Very sharp tips form at the end, while the drop remains stable. On the right, the air-liquid
surface of a container draining from a hole in the bottom �2�. The liquid is very viscous silicone oil.
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solve the resulting integral equation for the velocity on the
contour. The kernel of the line integrals contain logarithmic
singularities, which are quite tedious to remove. An elegant
way to subtract the singularity to leading order was proposed
by �24�, using the exact relationships �28�

1

2
I = �

S

n · Kd�2 �4�

and

�
S

J · nd�2 = 0. �5�

Using Eqs. �4� and �5�, Eq. �1� can be recast in the form

u�x1� = − �
S

��x2�J · nd�2 + ��x1��
S�

J · nd�2

+ �� − 1��
S

�u�x2� − u�x1�� · K · nd�2 + u�ext��x1� ,

�6�

where S� is an arbitrary closed surface. Equation �6� for the
velocity on the surface S is the equation that forms the basis
for all numerical calculations in this paper. Usually S� is
taken to be the same as S, so as the integration variable x2
comes close to x1, the integrands become identical �up to a
sign�, and the singularity is subtracted. However, this proce-
dure has to be modified for the present simulations, for
which the curvature, appearing in the first integral, is very
sharply peaked. This means that the second integral in Eq.
�6� is multiplied by a large number �up to 109 in the case of
our simulations�, if x1 falls into a region of high curvature.
As a result, tiny errors in the integral, stemming from con-
tributions far away from the singular region, become hugely
amplified.

A way around this problem is illustrated in Fig. 2. The
second surface S� only agrees with S in a small cap region
around the tip �the maximum curvature �m occurs on the z
axis�, whose size is of order ��x1�−1 and contains x1. Thus
the contribution from the cap is small, yet S and S� are iden-
tical around the point of interest x1. The contribution coming
from the cylindrical part of S� can be evaluated exactly in
terms of elliptic integrals. The contribution from the far end
of the cylinder goes to zero, so S� can be considered to be
closed at infinity.

Both integrals and derivatives are evaluated using the
simplest possible finite-difference formulas based on polyno-
mial interpolation. As the grid is highly graded to obtain
sufficient resolution near the tip, all formulas are valid for
unequally spaced grid points. The integration formula we
used is of fourth order in the grid spacing, the formula for the
second derivative �to compute the curvature �� is of third
order. Since the kernels of the integrals, after azimuthal in-
tegration, have logarithmic singularities, the kernel behaves
like x ln x after the subtraction. This makes the error of the
integral coming from a local region around the singularity of
second order in the most unfavorable case of a nonuniform
grid. If the grid around the singularity is uniform, the contri-
bution from x ln x cancels and the method becomes third
order. We choose the grid to vary gradually, so the second-
order contribution to the error always remains small.

If k is the number of grid points needed to represent one
quadrant of the drop, Eq. �6� is a matrix equation for 2k
unknown velocity components �we only looked at situations
symmetric with respect to z→−z�. This equation was solved
using standard LU decomposition �30�. As a test of the nu-
merical procedure to compute the velocity, we compared to
an exactly solvable problem: the extensional flow around a
spherical drop filled with an inviscid gas. Thus the external
flow is

uz
�ext� = Gz, ur

�ext� = −
G

2
r . �7�

A calculation completely analogous to the uniform flow
around a spherical drop �31� yields both the normal stress
and the tangential velocity around the drop. Namely, for the
normal stress we find

n · � · n = G�− 4 sin���2 + 8 cos���2� , �8�

where � is the polar angle. If this expression is inserted for �
into Eq. �6�, the normal velocity vn should be zero. This is
seen in Fig. 3, which demonstrates the expected third-order
convergence with grid spacing for a uniform grid.

S

S’
z

FIG. 2. Schematic of the subtraction procedure. The surface S is
the drop, S� is defined to be identical to S in a small region around
the tip, and a cylinder extending to infinity away from the tip.
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FIG. 3. The numerically determined maximum of the normal
speed converges to zero like the third power of the grid spacing
�given in terms of the polar angle ��. The fat line has a slope of −3.
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The problems we are interested in exhibit a highly local-
ized curvature at the tipped end of drops or at the centerline
of the selective withdrawal experiment. The maximum of the
curvature occurs on the centerline and then drops off rapidly
as function of the polar angle �. With this solution structure
in mind, we determine the angle �1/2 at which the curvature
has fallen to half of its peak value. Based on this half-width,
we use 50 grid points at constant grid spacing �as function of
�� up to 2�1/2 to resolve the central peak. After that, the grid
spacing is increased geometrically, making sure the spacing
does not change by more than 3% from one interval to the
next, down to a maximum grid size, sufficient to resolve the
O�1� regions of the drop.

C. Newton’s method

All results reported in this paper concern stationary solu-
tions of the flow equations, i.e., solutions for which the nor-
mal velocity vanishes:

u�n� = 0. �9�

To compute u�n�, one first has to solve Eq. �6� for the velocity
itself and then multiply with the normal vector. The integrals
over the surface of the drop can be reduced to integrals over
the cross section by performing the azimuthal integration,
and explicit expressions for the kernels are found in �26�. We
solve for the shape of the drop, which we represented as the
radius of the drop’s cross section as function of the polar
angle: 	=	���. Thus there are k unknowns 	i , i=1, . . . ,k at
the node points and we demand u�n� to vanish at each of the
nodes. To obtain a unique answer, one also needs to fix the
volume V, so the condition uk

�n�=0 at the equator of the drop
was replaced by the requirement that volume is conserved. In
units of the unperturbed radius, this implies that V=4� /3.

To implement Newton’s method, the matrix

Aij =
�ui

�n�

�	 j
�10�

is needed. As mentioned before, Eq. �6� can be written as a
2k-dimensional matrix equation

Mij��	m	�v j = f i��	m	� , �11�

where �v j	 is the vector of the node velocities. The partial
derivatives become

�v j

�	m
= Mij

−1� � f i

�	m
−

�Mil

�	m
vl� . �12�

Note that to compute the derivatives, the LU decomposition
only needs to be performed once, and then each equation can
be solved by substitution, which is a �2k�2 process �30�. Thus
by carefully avoiding having to evaluate any of the deriva-
tives twice, the whole process is of order �2k�3.

Using definition �9�, the derivatives Aij of the normal ve-
locities with respect to the 	 j are easily computed. We then
implemented Newton’s method �30� in the most straightfor-
ward fashion. If one starts from a sufficiently good initial
condition, we found the method to converge quadratically, as
expected. The normal velocity u�n� always converged to val-

ues limited by numerical noise, coming from round-off er-
rors. In the worst case, for a maximum local curvature of
�m
109, the maximum normal velocity was max�u�n��

10−6. In addition, by computing the eigenvalues of the ma-
trix Aij, we can determine whether a given profile is stable:
for this to be true, all eigenvalues must be negative.

D. Continuation

If one is searching for highly deformed drops, Newton’s
method will not converge starting from an equilibrium
�spherical� drop. Instead, the shapes have to be continued
using a parameter that measures the degree of deformation
such as the strength of the flow G. Thus we initially search
for the stationary state for a small value of G, which can be
reached starting from an undeformed drop. Once a stationary
profile has been found, we extrapolate along rays of constant
�i to find a new initial value of 	 for each �i. To this end, we
fit a polynomial to two or three consecutive pairs of values
�G ,	��i��. The polynomial was then evaluated at a new value
of G to obtain a starting profile for Newton’s method.

To find the new value of G, we used a very simple “time
stepping” procedure. Namely, a step was deemed successful
if Newton’s method converged to a certain error bound and if
the maximum curvature of the resulting profile increased by
no more than 20% from the last value. Otherwise the step
was designated a failure and the step size was halved. Fur-
thermore, if the initial residual of Newton’s method was too
large, the step was designated a failure from the outset. Us-
ing this method, we were generally able to continue the so-
lution curve to maximum curvatures between 108 and 109.
This typically took a few hours on a laptop computer. As a
result, we obtained “solution curves” of one parameter, such
as the drop length, as function of a control parameter such as
the flow strength; see for example Fig. 6 below.

As we will discuss in more detail below, the curve of drop
length as function of the flow strength is expected to con-
tinue forever if the interior of the drop is inviscid. If on the
other hand the viscosity ratio � is finite, solutions only con-
tinue up to a finite value Gc of the strength of the flow. Since
the solution curve ends in a vertical tangent at this saddle-
node bifurcation �17�, it cannot be continued beyond this
point and it is necessary to use another continuation param-
eter. One possibility is to use the major half-axis L of the
drop and search for G as part of the solution. This permits to
extend the solution beyond the bifurcation point and to ob-
tain accurate values of Gc. Below we will also see that the
drop shapes lose their stability precisely at the bifurcation
point; i.e., the maximum eigenvalue goes to zero, consistent
with a saddle-node bifurcation.

E. External flow

In the fundamental Eq. �6� of the boundary integral for-
mulation, the external flow u�ext� is driving the problem on a
large scale. In the case of drops, a family of flows considered
previously �22,23� is a generalization of Eq. �7�:

uz
�ext� = Gz�1 + c2z2�, ur

�ext� = −
G

2
r�1 + 3c2z2� . �13�

In particular, the purpose of the higher-order terms is to ap-
proximate the flow at the center of a “four roller” �1� appa-

J. EGGERS AND S. COURRECH DU PONT PHYSICAL REVIEW E 79, 066311 �2009�

066311-4



ratus more accurately. For selective withdrawal, a realistic
driving flow is a point source �see Eq. �30� below�, as long as
the radius of the pipe through which fluid is withdrawn is
small compared to the distance from the horizontal interface.
Quantitative comparison between experiment and simulation
will provide ample evidence that this is indeed a realistic
approximation. To realize the closest correspondence pos-
sible between the problem of a closed drop in an external
flow and selective withdrawal, we also considered the case of
a drop placed between two point sources of equal strength.

As we will explain in more detail in Sec. VI below, we
found that the outer flow has very little impact on the local
structure of tips once they are formed. For this reason, most
of the results reported here refer to the simplest case of c2
=0, which well represents all scenarios which exhibit sharp
tips. As pointed out in �23�, for some flows there may exist
no steady-state solution with tips, for example, if c2 in Eq.
�13� is sufficiently negative. We have confirmed this conclu-
sion for the choice c2=−0.2 /R2, in that we were not able to
numerically continue to a pointed solution, starting from a
spherical drop. However, our focus is on cases where tips do
form, as it is overwhelmingly the case experimentally, if the
flow is sufficiently strong.

III. DROPS

A. Drop shapes

Two different physical limits are amenable to theoretical
analysis of drop deformation, but excluding the tip region
�3,32�. First, the limit that the drop is close to spherical, or
that the capillary number

Ca =
GR�

�
�14�

is small. Below, we will use the unperturbed drop radius R to
nondimensionalize all lengths. In this small deformation
limit one may apply perturbation theory �33� in the capillary
number. As seen in Fig. 4, our numerics are in excellent
agreement with perturbation theory; however, perturbation
theory rapidly becomes invalid if Ca is in the order of 0.2.
The same result had previously been obtained by �28� and in
unpublished work by Duffy and Blundell reported in �34�.
On the other hand, the corresponding curve of D versus Ca
for c2=0, reported in �23�, shows deformations about twice
as great as ours, and thus appears to be inconsistent with
perturbation theory. Our numerical solutions were obtained
by starting from a small value of the capillary number, Ca

0.01, and gradually extending the solution as explained in
the previous section.

Second, one can consider strongly deformed drops using
the drop’s slenderness 
 as an expansion parameter �20�. For-
mally, this corresponds to the large capillary number limit,
but Ca is always smaller than unity in practice. The large
deformation theory, to be explained in some detail below,
can be used to compute the shape of drops with vanishing
and with finite but small viscosity ratio �. In particular, the
theory provides an explanation for the bursting of drops at
some critical capillary number Cacr, which is a function of �.

For �=0 the slender-body theory predicts a stationary drop
for any value of Ca. In Fig. 5 we show as the solid line a
numerically computed drop shape for the largest capillary
number obtainable, for which �m
2.5�108. Similar to the
results at small deformation, drop shapes shown in �23� are
far more elongated than ours at corresponding capillary num-
bers. Also, in all previous work no tests are reported con-
firming that the tip region remains fully resolved as the cap-
illary number is increased.

The theory for the shape and stability of highly extended
and slightly viscous drops was developed by Taylor and was
communicated in a brief account �17�. Taylor’s calculations
were worked out in detail later using careful asymptotics
�18–20�, absent from his original account, but ultimately
with identical results. The asymptotics is based on a system-
atic expansion in the aspect ratio �or slenderness� 
=b /� of
the drop and viscosity ratios up to �=
2. Here the half-length
of the drop is �, its half-width b. Below we only give the
intuitive version of the theory, based on the idea to treat the
drop as a perturbation to the external flow, concentrated
along the axis. This perturbation can be represented as a line
distribution of 2D sources chosen to satisfy the boundary

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

Ca

D

FIG. 4. The deformation D= ��−b� / ��+b� of an inviscid ��
=0� drop �or gas bubble� as function of the capillary number. The
major axis is �; the minor axis is b. The full line is the result of the
present numerical code, the dotted line perturbation theory to first
order in Ca, and the dashed line second-order perturbation theory
�33�, which runs into a singularity.

h(z)

z

r

FIG. 5. The shape h�z� of an inviscid ��=0� drop �or bubble� at
Ca=0.4393, which is the highest capillary number presently achiev-
able with our code. The curvature at the tip is �m=2.54�108. The
dashed line is the prediction of Taylor’s theory �Eqs. �18� and �19��.
The half-length of the drop �in units of R� is l=4.797, its half-width
b=0.497, making the deformation parameter D=0.812.
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conditions to leading order. This is indeed possible, and for
any axisymmetric external flow leads to

dhuz
�ext�

dz
= h

p�z�
2

−
1

2
, �15�

where h�z� is the drop profile. The second member on the
right is the contribution from surface tension; p�z� is the
pressure inside the drop. Near the end zend of the drop, where
h vanishes, the solution is a cone:

h =
zend − z

2uz
�ext��zend�

, �16�

whose opening angle depends on the local flow strength.
Description �15� breaks down at the very end of the drop

�the tip�, where the shape is no longer slender. Indeed, the
conical solution �16� has been shown �18� to be inconsistent
with the stationary flow equations. Nevertheless, one would
still expect Eq. �15� to be the correct outer solution in the
sense of matched asymptotic expansions �35�. The reason is
that a solution of Eq. �15� is determined completely in terms
of the requirement that h goes to zero at the tip, as well as the
drop volume. Thus there is no free parameter to be fixed by
the inner solution, which must rather adapt to the outer so-
lution.

In the case of simple extensional flow �7�, Eq. �15� re-
duces to

Ca
dhz

dz
= h

p�z�
2

−
1

2
. �17�

If in addition the viscosity of the drop fluid vanishes ��
=0�, the inner pressure is a constant: p�z�= p0. It is simple to
check that if the pressure is chosen to be p0=6Ca, a solution
to Eq. �17�, corresponding to a closed drop, becomes a
simple quadratic:

h�z� =
1

4Ca
�1 − � z

�
�2� . �18�

Since the drop volume is V=4� /3 in dimensionless vari-
ables, the drop half-length � can be found from integrating
Eq. �18�:

� = 20Ca2. �19�

It is argued in �20� that the quadratic solution �18� is the only
stable solution of Eq. �17�. The shape of the drop as given by
Eqs. �18� and �19� is shown in Fig. 5 as the dashed line for a
single capillary number. The numerical simulation gives a
drop shape which is significantly more extended �full line�.
As an aside, the parabolic shape, with a properly adjusted
value of �, provides a very good �but of course not exact�, fit
for the shape of the drop. The inviscid prediction �19� for the
Ca dependence of the drop length is compared to our simu-
lations in Fig. 6. In spite of the drop being quite extended for
the largest capillary number �the aspect ratio is about 10�, the
length is predicted only to within 30%. In particular, there is
not yet a clear sign of the predicted quadratic growth in the
length of the drop.

The above solution for an inviscid drop exists for all cap-
illary numbers. In Taylor’s theory a transition occurs only for

finite �, owing to the pressure building up near the ends of
the drop, as we will see below. The pressure p�z� in the
interior of the drop can be evaluated using simple lubrication
ideas �18,20�, giving

p = p0 + 8�Ca�
0

z sds

h2�s�
. �20�

The integration is along the axis of the drop. For �=0 the
pressure is constant, which is the case considered previously.
Inserting Eq. �20� into Eq. �17� and differentiating leads to a
single differential equation for h�z�. It can be simplified us-
ing the similarity form

h�z� = Ca−1H�z/�� , �21�

where �=z /� is the axial coordinate, rescaled by the drop
length. The result is

2�HH� + �HH� − �H�2� = 8�Ca2�2� + H�, �22�

where the prime denotes differentiation with respect to the
argument.

Equation �22� is to be solved with boundary conditions
H�1�=0, with the regular solution

H��� = A�1 − �2�, A =
1

8
�1 + 1 − 64�Ca2l2� . �23�

Once more, the drop length � is determined by computing
the volume, which is V=4� /3 in units of R, giving

A = 5

4�
Ca. �24�

Note that the drop shape is the same, whatever the value of
�, apart from a rescaling of the drop width and length. How-
ever, it is apparent from the form of the parameter A in Eq.
�23�, that the solution must break down with increasing �.
We study this bifurcation in the next subsection.

B. Drop bifurcation

The bifurcation of slightly viscous drop is caused by the
lubrication pressure that builds up inside the drop. To find the

FIG. 6. The length of an inviscid drop ��=0� in an extensional
flow as predicted by Taylor’s theory: �=20Ca2 �light line� and by
the present simulations �heavy line�.
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bifurcation diagram, the parameter A is eliminated between
Eqs. �23� and �24�. The resulting equation is �17�

� =
1

20

�

1 + 4�3/5
, �25�

where we have introduced the parameters

� = Ca�1/6, � = ��1/3. �26�

The bifurcation curve, plotted in Fig. 7 as the heavy line, has
the form of a saddle-node bifurcation �36�. At a critical value
�cr of the drop length, the capillary parameter reaches a
maximum value �cr. From Eq. �25�, the numerical values are

�cr =
51/222/3

24
, �cr = 2−2/3. �27�

Thus, in terms of the control parameter, the solution vanishes
if Ca is greater than a critical value

Cacr =
51/222/3

24
�−1/6. �28�

The form of the bifurcation curve �25� was tested in Fig.
7 for two different values of �. In agreement with slender-
body theory �see Eq. �23� above�, we find the drop shapes for
finite � to be virtually indistinguishable from their inviscid
counterpart shown in Fig. 5. To be able to go across the
bifurcation point, the flow strength G was held constant, but
the length of the drop � is stepped up. For each Newton
search, 	�0�=� is held constant, and the 	i , i=2, . . . ,k are
sought. Thus instead of the drop volume being a constraint, it
now comes out as part of the solution, which determines R.
With this value of R we can determine Ca and nondimen-
sionalize � to compute the parameters � and � according to
Eq. �26�. As a result, we obtain the full and dashed curves in
Fig. 7. Both curves exhibit a maximum, in line with Taylor’s
theory. In the limit of infinite slenderness, all results are ex-
pected to collapse onto the heavy line. Indeed, for smaller �
the numerical curve is closer to the theoretical result. How-
ever, although the drops are reasonably slender �the maxi-
mum slenderness is 
=b /�=0.09�, there remain considerable
quantitative differences. We have also performed a linear sta-
bility analysis around each stationary shape to be described
in more detail in the next section for the case of selective
withdrawal. As expected for a saddle-node bifurcation, all
solutions to the left of �cr are stable, the others are unstable,
meaning that the largest eigenvalue of the matrix Aij in Eq.
�10� goes through zero at �cr.

Result �28� for the upper critical capillary number is
tested separately in Fig. 8 �left�. To allow for a more quan-
titative comparison, Ccr was multiplied by �1/6, so Taylor’s
theory predicts a horizontal line. The numerical data are con-
sistent with a logarithmic dependence of the prefactor on �,
which is not captured by the theory. Since the tip region has
been neglected in the theoretical description, Eq. �28� is
strictly speaking only an upper bound, since other instabili-
ties might be triggered by localized perturbations in the tip
region. However, this scenario is not likely considering the
eigenfunction of the mode which turns unstable at the bifur-
cation: it remains relatively smooth on the scale set by the
inverse curvature.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
µ

ξ

FIG. 7. The rescaled capillary parameter �=Ca�1/6 plotted as
function of the rescaled drop length �=��1/3 for a drop with �
=10−2 �full line� and �=5�10−3 �dashed line�. The heavy line is
Taylor’s universal theory �Eq. �25��. The states to the left of the
maximum are stable; the other side corresponds to unstable states.

FIG. 8. A comparison between Taylor’s theory for the instability of a slightly viscous drop and the present numerical simulations is
shown on the left. The horizontal line at Cacr�

1/6=0.146 represents Taylor’s theory. On the right, we show the value of the tip curvature
reached at the point of instability.
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To understand the mechanism leading to the bursting of
drops, it is instructive to compute the pressure in the interior.
Inserting solution �23� into Eq. �17� one finds

p��� = p0 +
16

5
��3Ca

�2

1 − �2 , p0 = Ca� 2�

5Ca
+ 2� .

�29�

Note that pressure �29� diverges at the tip �=z /�=1, as does
the Laplace pressure near a conical tip. This is a reflection of
the fact that the slender-body solution breaks down at the tip
and will have to be replaced by another, local solution. In the
limit �=0 one recovers the previous inviscid result.

The pressure that builds up near the end of the drop di-
verges like p��Ca�3 / �1−�2�, while the capillary pressure
behaves like pcap�1 /h�Ca /H�Ca / �1−�2�. For the drop to
be unstable the two must be of the same order, which implies
��3��Ca6=O�1�, using ��Ca2. This explains the scaling of
the critical capillary number found in Eq. �28�. The mecha-
nism for the instability has been described in �21�: the in-
creased inner pressure pushes the drop ends outward, in-
creasing the length � of the drop, which on account of
volume conservation means that the drop has to become nar-
rower. But this means the interior lubrication pressure has to
increase even more, thus promoting instability. Note that the
pressure p0 in the center of the drop is subdominant relative
to the pressure that builds up near the end �p0 does however
increase with Ca owing to increasing squeezing by the outer
flow�. Thus we can conclude that the volume constraint plays
an insignificant role in producing instability. In particular, a
similar mechanism is expected to be at work for the selective
withdrawal geometry.

The instability mechanism described above is quite simi-
lar to that responsible for the breaking of a two-dimensional
cusp, first described in �37�. However, a crucial difference is
that in the two-dimensional case the pressure builds up en-
tirely inside the self-similar tip region. First, this makes the
criterion for the bursting of a cusp universal, independent of
the large scale geometry. Second, in the two-dimensional
case the instability is directly related to the curvature of the
cusp limiting the maximum curvature that can be reached. In
the present three-dimensional case, the tip curvature can
reach much higher values without affecting stability, as
shown in Fig. 8 �right�. The value of the tip curvature is
described essentially by the case of an inviscid drop ��=0�,
to be discussed in more detail in Sec. VI below. In the next
section, we will see that the criterion for the bifurcation is
different for the two geometries considered in this paper.
Thus the bifurcation of a three-dimensional tip is indeed less
universal than its two-dimensional counterpart.

IV. SELECTIVE WITHDRAWAL

A. Basic properties

Next we consider the selective withdrawal geometry, cf.
Fig. 9; see also the experimental picture in Fig. 1 �2�. In an
experiment with two liquids, lighter liquid is withdrawn from
above heavy liquid �6�, while in Fig. 1 the situation is re-
versed: fluid escapes from below an air atmosphere through a

sink hole. In our simulations, we treat the fluid as being of
infinite extent, both vertically and horizontally. A point sink
of strength q is placed at the origin of the coordinate system:

u�ext� = −
q

4�

r

�r�3
, �30�

which is at a distance z0 from the equilibrium surface. The
viscosity of the fluid that is being withdrawn is �, that of the
other fluid �or gas� is ��. The surface is most conveniently
represented as the height f�r� above the equilibrium value
and where r is the radial distance from the centerline �cf. Fig.
9�. Hydrostatic pressure is included by introducing the invis-
cid part of the pressure jump as �p=��−�	gf�r� across the
interface, where �	 is the density contrast and g is the ac-
celeration of gravity �38�.

Using the capillary length �c=� / ��	g� as a length scale
and the corresponding time scale ��c /� to nondimensional-
ize the equations, the problem is controlled by the two pa-
rameters

� =
q�

�c
2�

, E =
z0

�c
. �31�

Alternatively, one can use the parameters introduced in �38�:

Q =
q�

�	gz0
4 �

�

E4 , � =
�

�	gz0
2 �

1

E2 , �32�

which correspond to using z0 as a length scale and � / �	gz0�
as the time scale.

Lister �38� developed a perturbation theory in the sink
strength Q for the case �=1, but which is easily generalized
to arbitrary �, using the solutions given in �39�. Surprisingly,
the leading order equation for the interface turns out to be
independent of �, so the general result is the same as the one
found in �38�:
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FIG. 9. Computed interface profiles for selective withdrawal,
over a wide range of tip curvatures, in units of the distance z0

between the sink and the unperturbed interface. The position of the
sink is also taken as origin of the coordinate system. The distance
between the tip and the sink is denoted zt. The second parameter of
Eq. �32� is �=1 /9, the dimensionless flow strength takes the values
Q=0.36, 0.42, 0.474, and 0.6066. For the latter value, the tip cur-
vature reaches 2.9�108.
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f�r� − �� f� +
f�

r
� =

Q

�

2 − r2

�1 + r2�5/2n . �33�

For large distances r from the center this leads to the univer-
sal behavior

f�r� 
 −
Q

�r3 , �34�

hence far away from the sink �compared to the capillary
length�, the interface shape is controlled by a balance of
viscous forces and gravity. Interestingly, the surface is lifted
up far away from the line of symmetry rather than being
pulled down by the sink. We also rederived Lister’s theory
for the next order, at which the result becomes � dependent.
We used the result as a check of our fully nonlinear numer-
ics, but there is no need to present it here, since the calcula-
tion is very similar to the �=1 case.

The interface between the two phases is not closed, so Eq.
�1� cannot be applied directly. We closed the interface using
a cylindrical box S�, whose radius and height are sent to
infinity. The J integral on the right of Eq. �1� does not give a
contribution from S�, while the K integral is calculated as

�
S�

u · K · nd� =
1

2
u , �35�

the contribution of which is included when evaluating Eq.
�6�. To perform the indefinite integral over the horizontal
surface extending to infinity, grid points are chosen at regu-
larly spaced intervals in the polar angle �. At the point �
=� /2 at infinity, the deformation and the curvature are zero.
Numerical results are in excellent agreement with the theo-
retical prediction �34�. In an alternative version of the code,
the elevation of the surface and its curvature was held fixed
at the value prescribed by Eq. �34� at the last grid point. Both
methods give answers virtually indistinguishable from each
other, but the latter version is slightly more accurate. It
brings down the numerical error in computing the far-field
curvature to about 10−8. Typical profiles, computed using the
above a procedure, are shown in Fig. 9. Only the center
region near the hump is shown �the last grid point is at r
=200�. We now continue with a more detailed study of the
transition from the hump toward a jet, which is also referred
to as a “spout” �5�.

B. Bifurcation

The structure of the bifurcation observed for selective
withdrawal is very similar to that observed for drops as
shown in Fig. 10. In complete analogy to Fig. 7, the flow
strength Q goes through a maximum as function of the
height of the hump f�0�. Interestingly, the bifurcation curve
continues to oscillate beyond the bifurcation point, a feature
reminiscent of liquid film transitions with receding contact
lines �40�. The corresponding real-space profiles are shown
in Fig. 11. No obvious feature distinguishes profiles just
above and below the transition. However, as f�0� is raised to
a value far above the transition, the profile becomes much
more pointed. A closeup �inset� reveals a sharp nose that is

reminiscent of thin jets observed experimentally �41�. This
profile is indicative of structures that may form dynamically
above the transition.

The dynamical equation governing the motion of the in-
terface profile f�r , t� is

�t f = 1 + ��rf�2u�n�, �36�

where the normal velocity u�n� is computed according to Eq.
�9�. Thus if one of the eigenvalues of the matrix Aij �see Eq.
�10�� is positive, the profile is unstable. The dashed line of
Fig. 10 shows the largest eigenvalue �max of Aij. At the bi-
furcation point �first maximum of the full line� �max goes
through zero, as expected for a saddle-node bifurcation
�25,36�. The final profile, showing the birth of a hump �inset
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FIG. 10. A bifurcation diagram for �=0.1 and �=1 /3. The full
line is the source strength Q; the dashed line the maximum eigen-
value �max. The inset shows a detail of the bifurcation curve, which
oscillates beyond the bifurcation point.
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FIG. 11. Interface profiles corresponding to Fig. 10. The upper
two profiles are just below or above the transition, Q=0.4828; the
bottom profile is at Q=0.4822, far above the transition, �max=40.
The inset shows a closeup of the tip of the bottom profile.
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of Fig. 11�, corresponds to a large positive eigenvalue and is
therefore quite unstable.

As a test, we compare to the earlier results of �38� for the
case �=1. To that end, as for the rest of this section, we will
be using the dimensionless parameters �32� of Lister. As the
effective flow rate Q is increased, the lower fluid rises up to
form a hump �6�. If the value is raised above a critical value,
the profile becomes unstable and a jet is formed. As seen in
Fig. 12, the critical value increases with the surface tension
parameter �. In �38� the boundary was determined using a
dynamical code: the lower estimate corresponds to the larg-
est Q for which a stationary profile could be observed; the
upper estimate corresponds to dynamical solutions.

With the present code, the bifurcation point was deter-
mined as for the drop case. Namely, the height f0� f�0� of
the hump was held constant and the corresponding value of
Q was sought. The local maximum value of Q corresponds to
the bifurcation point marked by diamonds in Fig. 12. As
apparent from the figure, the agreement with the earlier dy-
namical simulations is excellent.

Finally, we monitor the flow strength at which instability
occurs, in analogy to Fig. 8 in the case of drops. For small �,
the relationship between the critical flow strength seems to
be well described by a power law, with slope 1/15, see Fig.
13. Even if one allows for the fact that the effective capillary
number at the tip scales roughly like Ca�Q1/2, this is still a
somewhat weaker dependence than that for drops.

V. COMPARISON TO EXPERIMENT

A. Scaling of the tip

Previous experimental work �2,5,6� was motivated largely
by the question of whether there exists a singularity of the
curvature at finite capillary number. A singularity would im-
ply the formation of arbitrarily small free-surface features
even at finite driving. Our numerical simulations reproduce
previous experimental data and the scaling descriptions
found over a finite range of curvatures. However, if we fol-

low the data to higher curvatures than was considered previ-
ously, we find the scaling laws to fail. Instead, in the next
section we will present numerical evidence that a singularity
does not exist, but that the tip remains rounded at finite driv-
ing.

The most detailed recent study of the selective withdrawal
geometry using two different fluids was reported in �5,6�,
withdrawing a less dense fluid from above another fluid
through a pipette. The viscosity ratio is typically between
�
1 and 10−3, but more recently the reverse case of �

20 was considered as well �41�. The fluids reside in a large
tank, hence the extent of the interface can be considered
infinite to a good approximation. Experiments were per-
formed at a constant distance z0 between the pipette and the
equilibrium interface position, while the flow rate was var-
ied. Below we simulate the two-fluid selective withdrawal
experiment using an experimental pipette height z0
=0.921 cm for reference, much larger than the pipette diam-
eter of D=0.16 cm. Thus we expect our approximation of a
point sink for the pipette to be appropriate.

In �5,6�, scaling behavior was found when plotting the tip
curvature as function of the maximum height f�0� of the
surface deformation:

�m = A� f0
c − f0

f0
��

, � = − 1.163. �37�

Note the nonstandard combination �f0
c − f0� / f0 in the depen-

dence on the hump height chosen by �5�. Over a limited
range to the right of the arrow in Fig. 14, our simulations
give agreement similar to that found in �5�. Using three ad-
justable parameters, the maximum range over which Eq. �37�
is an acceptable description was about two decades. How-
ever at higher flow rates the simulated curvature falls below
the expected power law. The failure of the scaling law �37�
was not seen in experiment, since the curve was cut off by a
transition toward a jet �6�.

Next we turn to the comparison to recent experiments
using a fluid-air system described in more detail in �2�. The
experimental flow is generated by a sink hole of 1 mm di-
ameter inside a container 3 cm wide. The most important

FIG. 12. The stability boundary for �=1. Crosses and circles
mark upper and lower bounds as given in �38�. Diamonds are the
result of the present numerical code; the line is a guide for the eyes.

FIG. 13. Critical values of the flow strength Q as function of �,
at a fixed value of �=1 /3. The slope shown is 1/15.
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difference in the experimental protocol as compared to �5� is
that for a given sequence of profiles, the flow rate is kept
constant, and the distance between the sink hole and the free
surface is changed adiabatically. It is difficult to recreate this
experimental geometry exactly. Instead, we chose a concep-
tually simple setup that is reasonably close to the real situa-
tion. Namely, we simulate the same flow as described in Sec.
IV, but instead of the isotropic sink flow �30� choose

u�ext� = −
3q

2�

r

�r�3
cos2 � , �38�

where � is the polar angle. The flow �38� is the Stokes flow
of a point hole in an infinitely extended flat plate �31�. This
means we ignore the coupling between the free surface and
the bottom of the experimental cell. To model a solid plate
correctly, it would have been necessary to replace Green’s
function �2� with the Green’s function appropriate for half
space. We will now demonstrate that in spite of these sim-
plifications, excellent agreement with experiment is found
for the tip region. This is sufficient, as our focus is really on
the universal properties close to the tip.

In Fig. 15, we compare the numerically computed tip cur-
vature to experiment, for a given flow rate q and fluid vis-
cosity �. It is obvious that using the computation, a far
greater range of curvatures can be explored. All the available
experimental data fits the numerical results very well. The
distance zt of the tip from the sink hole in the numerical data
has been shifted by a distance of 0.075 mm, less than 10% of
the experimental hole diameter. The necessity of a small shift
is of course to be expected, since the sink hole is not ideally
small.

In �2�, it is found that at a given flow rate, the tip curva-
ture �m is controlled by the distance zt between the tip and
sink hole. More importantly, the experimental evidence sug-
gests that the size of the tip vanishes at a finite distance zt

�.

All the available experimental data, for a variety of flow
rates, could be summarized by the single law

�m = 2.16
�1/2

�zt − zt
��3 . �39�

As is seen in Fig. 16, there seems to be equally good agree-
ment with Eq. �39�, over more than three decades in curva-
ture up to �m�c
103, all being reported in units of �c. The
numerical prefactor also is in good agreement with experi-
ment. Unfortunately, this agreement does not persist if data is
considered beyond �m values accessible experimentally, as
seen in Fig. 16. In fact, for the presumably singular value
zt=zt

� the numerics still gives a finite curvature of �m
=20.2 �m−1, and the simulation is eventually continued up
to �m=1.54�105 �m−1, at zt=1.746 mm. In the next sec-
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FIG. 14. A numerical computation of the tip curvature varying
the flow rate. Parameters correspond to system 5 of �6� and z0

=0.921 cm. This gives the dimensionless parameters E=1.354 and
�=5.9�10−3. Lengths are given in units of the capillary length.
The tip curvature data are fitted to Eq. �37� over the range shown to
the right of the arrow, giving A=2.726, f0

c =0.6606, and �=
−1.184.

FIG. 15. The tip curvature as function of the distance zt between
the tip and the nozzle; lengths are in units of the capillary length
�c=1.491 mm. The flow rate is q=1.32�10−9 m3 /s and �
=60 Pa s, and hence �=1.7763. Note that the curvature reported in
�2� is the one-dimensional curvature, half the value of �. The full
line is our computation; zt has been shifted by 0.05 to the right.
Symbols � and � correspond to two different experimental runs.
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FIG. 16. A numerical computation of the tip curvature as func-
tion of the distance zt, for �=6.3312. All lengths are in units of �c.
The full line is the fit �m=4.964 / �zt−zt

��3, and zt
�=1.388. The fit

parameters were determined using the data up to the position of the
arrow. The experimental prediction for the prefactor is 5.43.
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tion we will see that numerics suggests a �super�exponential
law, which predicts rapid growth of the curvature; however,
the curvature never goes infinite.

B. Experimental profiles

We now turn to the analysis of the entire profile, which
has not been much studied. First we compare an entire ex-
perimental profile to simulation as seen in Fig. 17; the cor-
responding value of h=1.27�c can be found from Fig. 15.
The neighborhood of the tip is described very well. This
explains the excellent theoretical prediction of the tip curva-
ture, which depends on local flow properties; also see Sec.
VI below. Farther away, however, significant differences ap-
pear. This is to be expected, since away from the tip we have
essentially a thin film flow over a solid boundary �the bottom
of the container�. As explained above, our present code is in
fact ignoring the effect of the solid boundary on the free

interface. Another factor might be the finite lateral size of the
experimental cell.

Analysis of the experimental profiles at constant q has led
us to a remarkable relation between different profiles, which
can be summarized by the following law, valid away from
the tip:

F�r� = z0 − f�r − �r�zt�� − �z�zt� . �40�

As shown in Fig. 18, one side of each profile can be super-
imposed onto a master curve F�r�, if shifted by an appropri-
ate value �z�zt� and �r�zt� in the z and r directions, respec-
tively. Evidently, this invariance cannot work at the tip itself
and is thus most significant when the tip is very small. We do
not have a theoretical explanation for Eq. �40�, but it pro-
vides us with a means of making contact with Taylor’s
slender-body theory �15�. The convention adopted in Eq.
�40� is such that F�r� is the position of the interface mea-
sured from the sink upward �cf. Fig. 9�. In particular, in the
limit of vanishing zt, �r and �z must go to zero, so F�r� is
simply the profile in the limit that the tip reaches the sink.

In the limit of vanishing viscosity of the air, the pressure
p�z� in Eq. �15� is constant, and in fact zero since the profile,
unlike a drop, is not closed. Thus integrating Eq. �15� once,
one obtains

hu�ext� = − z/2, �41�

valid close to the tip where the profile is slender and where
hydrostatic pressure is negligible. Thus using the external
flow �38�, we arrive at a prediction for the interface profile
near the sink hole, which does not contain any free param-
eters:
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FIG. 17. The tip profile at �m=5.607; the full line is experiment,
the dashed line simulation. Parameters are as in Fig. 15. In the
simulation, zt has been chosen to match the experimental curvature.
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FIG. 18. The experimental interface profiles can be superimposed according to Eq. �40� onto a master curve as shown on the left. The
inset shows the original unshifted profiles. The experimental parameters are q=9.97�10−9 m3 /s, �=30 Pa s, �=2.13�10−2 N /m, and
	=976 kg /m3. The values of the necessary shifts �z�zt� �closed symbols� and �r�zt� �open symbols� are shown on the right. The shifts are
fitted to Eq. �43�, allowing for a sink that is by zs=0.144 below its physical position. The fit gives a=0.265 and b=0.0383. The master curve
is fitted to F�r�=Ar1/3, with A= �1−a� /b1/3=2.18.

J. EGGERS AND S. COURRECH DU PONT PHYSICAL REVIEW E 79, 066311 �2009�

066311-12



F�r� = �3�

�
�1/3

r1/3. �42�

Here all lengths are measured in units of the capillary length
and � is defined by Eq. �31�. The prediction �42� is in good
agreement with experiment, where a best fit of the form
F�r�=Ar1/3 gives a prefactor of A=2.18, whereas Eq. �42�
yields A=1.82.

Once the power-law behavior of F�r� is known, one can
also gain information on the shifts �z and �r. By setting r
=�r in Eq. �40� one finds that F��r�=z0− f�0�−�z=zt−�z.
First, it is to be expected that �z is a regular function of zt,
since it is measured relative to the position of the planar
interface, which represents the far-field behavior of the prob-
lem. Thus one expects a linear dependence, as in Eq. �43�
below; this automatically fixes �r in terms of F and Eq. �42�
yields the following power laws:

�z = azt, �r = bzt
3. �43�

The prefactors a ,b are related to the prefactor of F�r� by A
= �1−a� /b1/3. In Fig. 18, we used this relationship to con-
strain the fits: first, we determined a and b from a fit to Eq.
�43�, as shown in Fig. 18, right. The value of A=2.18 ob-
tained from a ,b is shown in the comparison to F�r� on the
left. We have confirmed that the shift invariance �40� is valid
for the numerically computed profiles as well, as expected.
However, the available numerical data extend only to much
smaller capillary number and therefore yields much less sig-
nificant comparisons.

C. Jet transition

Finally, we turn to the stability of the interface and its
transition toward a jetting state. In the two-fluid experiments
�5,6�, the hump turned into a jet at about �m�c
15, more or
less independent of the value of � between 10−3 and 2. In our
simulations, we observe a transition at similar values of �m if
� is of order unity. For example, for �=1.26 �system 4, see
�6�� we find a maximum curvature of 15.3�c

−1, while �6� find
146�c

−1. However, as implied by the discussion of the pre-
vious section �cf. Fig. 13�, the simulations predict a very
rapid rise of the tip curvature at the transition with decreas-
ing �. Indeed, for �=5.9�10−3, realized for system 5 of �6�
�cf. Fig. 14�, we no longer found any evidence of a transi-
tion, even for the largest curvatures we are able to resolve.
Thus there is a qualitative disagreement between our numeri-
cal simulations of Stokes flow and experimental observation
in the two-fluid experiment. Experiments with an air-fluid
interface, for which � is between 2�10−5 and 3�10−7 �2�,
on the other hand, show no signs of a transition, whatever the
flow rate. This observation is in line with simulations. We
have no explanation for this qualitative difference between
the two experiments.

VI. UNIVERSALITY

We have seen in Sec. III B that the stability of the tip is
controlled by the pressure that accumulates over the conical
part of the drop �or hump in the withdrawal case�, see Eq.

�29� in particular. It is quite independent of the tip itself,
which can become extremely sharp even at moderate flow
strengths, as shown in Fig. 8. In particular, for typical drop
sizes �R
1 mm� the curvature at the point of instability of
the less viscous drops corresponds to subatomic radii of cur-
vature at the tip. It is thus clear that at least in practice the
transition cannot be controlled by the tip size. This is in line
with Taylor’s theory of Sec. III, which assumes the tip size to
be zero �apart from the fact that structures of this size would
not be describable by continuum theory�.

Having established that the transition toward a jet and the
shape of the tip are quite separate issues, let us focus on the
properties of the tip in the limiting case �=0 for the remain-
der of this section. We will show that the behavior of the tip
is universal, i.e., independent of the outer flow and of the
gross geometry �selective withdrawal or single drop case�.
We begin with a discussion of the axisymmetric shape h�z�
near the tip, where h�z� is defined in analogy to the drop
profile; see Fig. 9. In the slender-body theory of Sec. III this
shape was singular at the tip, corresponding to infinite cur-
vature. For finite but large curvature, one expects a similarity
solution of the form �11,37�

h�z� = �m
−1���z − ztip��m� , �44�

where � is a universal function, independent of the outer
flow geometry. This is indeed the case as seen in Fig. 19. The
approach to the scaling function � is however much quicker
in the case of a drop, owing to the fact that its shape is
entirely convex. As a result, the two rescaled drop tips, for
curvatures more than 2 orders of magnitude apart, are virtu-
ally indistinguishable. The same remains true if one subjects
a drop to very different flow fields, such as the extensional
flow �7�, its nonlinear version �Eq. �13��, or the sink flow

FIG. 19. The tip rescaled by the tip curvature. The full line and
dot-dashed lines correspond to selective withdrawal at �m=2.9
�108 and �m=106. The dashed line is for a drop in extensional flow
at �m=2.6�108; the symbols are for the same drop, but �m=2
�106. The profiles, although generated by very different flows,
collapse onto a universal function �, as suggested by Eq. �44�. The
curve at a much smaller curvature demonstrates the slowness of the
approach to a universal law for selective withdrawal. The two
curves for a drop, on the other hand, are indistinguishable.
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�30�. Of course this statement is contingent on the fact that a
tip actually forms; as shown in �23�, there are some flow
fields �Eq. �13�� with c2 negative where the drop appears to
burst before a tip occurs.

At the highest curvature, the rescaled tip profile in the
selective withdrawal geometry superimposes very well with
the drop profile, but at a lower curvature collapse only occurs
close to the tip. This illustrates the slow approach to the
asymptotic limit for selective withdrawal, most likely due to
the fact that the curvature changes sign away from the tip. As
yet there is no explanation for the shape of the tip itself. A
considerable technical problem is that the tip is not slender,
so Eq. �17� is not valid.

Since the shape of the tip region is universal according to
Eq. �44�, the same can expected for the flow close to the tip.
In that case dimensional analysis implies that there is a linear
relationship between the tip curvature and the extension rate
�̇��vr /�r at the tip; from incompressibility, one also has
�̇=−�vz /�z. Note that the extension rate is computed on the
basis of the full velocity field, not just the externally imposed
velocity field. Since the capillary velocity � /� is the only
local velocity scale, we have

�m = C�

�

�
�̇ , �45�

where C�=5.13 is found empirically. The linear relationship
�45� is confirmed by Fig. 20, from a fit to which the numeri-
cal value of C� is also taken. For large extension rates, the
curvature becomes practically identical for the two very dif-
ferent geometries under study demonstrating the locality of
the flow.

A somewhat less obvious question is whether there is a
relationship between �m and the flow strength, as measured
by the unperturbed velocity field �7�, evaluated at the tip.
However this is indeed the case as shown in Fig. 21; the
velocity has been nondimensionalized using the capillary ve-

locity � /� to give a capillary number. Namely, asymptoti-
cally the curvature is well described by

�m = C exp�aCatip
2 � , �46�

where a appears to be a universal number. This conclusion is
supported by the fact that the slope a=1.6 is found to be
nearly identical for a drop simulation, as shown in Fig. 21.
We have also added the experimental data points taken from
Fig. 15 to this figure. While the experimental points do not
extend far into the asymptotic regime, they are clearly con-
sistent with Eq. �46�.

The scaling �46� of the tip curvature disagrees with earlier
theoretical estimates for the scale on which the tip becomes
rounded �18�. To find this length, Ref. �18� extended Taylor’s
expansion in the slenderness, presented in Sec. III A, to
higher order. To leading order, the rescaled drop profile �21�
behaves like H���
 1

2 �1−�� near the tip, which is located at
�=1. The higher-order contributions, confirmed later by �20�,
are

H��� =
1

2
�1 − �� + B
2�1 − ��ln�1 − �� + O
�
3� , �47�

where 
�Ca−3 is the slenderness. The higher-order contribu-
tions are expected to describe the rounding of the perfectly
conical tip. Thus estimating the scale 1−� where the next
order becomes comparable to the leading order gives

1 − � � exp�− a1
−2� � exp�− a1Ca6� �48�

for this scale. However, scale �48� suggested by this argu-
ment is evidently much smaller than the inverse of curvature
�46� found in numerical simulation.

VII. SUMMARY AND CONCLUSIONS

In this paper we investigated the formation of axisymmet-
ric tips in strong flows. In the absence of an inner fluid

FIG. 20. The curvature as function of the extension rate �̇ at the
tip for both a drop in extensional flow �solid line� and for selective
withdrawal �dashed line�, �=0. For large curvature, both curves are
in very close agreement with �m= 5.13�

� �̇.
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FIG. 21. The tip curvature as function of the square of the cap-
illary number Catip based on the unperturbed velocity �7� at the tip.
The solid line is for an inviscid drop in an extensional flow, the
dashed line for selective withdrawal, �=1.7763; the symbols are
from the corresponding experiment. The heavy line has a slope of
a=1.6. We have rescaled the curvature of the drop by an arbitrary
constant to make the asymptotic behavior collapse.
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��=0�, neither existing analytical results nor our numerics
indicate loss of stability. This permits to investigate the in-
terface shape in the limit of strong flows. In practice, how-
ever, the range of accessible capillary number is severely
limited by a steep increase in the tip curvature, as seen in
Fig. 8, right. Thus even at a moderate capillary numbers of
1/2 the tip of the drop shown in Fig. 5 can no longer be
resolved. If on the other hand � is finite, the tip solution
always undergoes a saddle-node bifurcation. The above
statements apply to both the drop and the selective with-
drawal geometry, and to all external flows studied. The ad-
vantage of the drop geometry is its slender shape, so theory
is simpler. For the selective withdrawal geometry, on the
other hand, more quantitative experimental data are available
and axisymmetry is verified more or less exactly.

In the limit of large Ca, assuming �=0, the tip region can
be split into two parts. First is an outer solution described by
Taylor’s theory. Near the tip �but on scales much larger than
�m

−1� this gives the conical solution �16�, whose opening
angle is controlled by the balance between surface tension
and the outer flow evaluated at the tip. Experiments at very
large capillary numbers �up to 10� confirm the slender-body
scaling �16� �16�. Good agreement was also found for the
limiting case where the tip enters the sink, cf. Fig. 18.

On the scale of the tip size, there exists an inner region
described by the profile shown in Fig. 19. Numerical evi-
dence shows that it is the same independent of the driving
flow and even for very different geometries �a drop or selec-
tive withdrawal�. However, at the moment there is no theory
for the universal tip shape shown in Fig. 19. Note that the tip
region cannot be matched directly to the conical outer solu-
tion. The latter has an opening angle that depends on Ca,

while the opening angle of the former would have to be
universal. There is also no theory for the tip curvature given
by Eq. �46�. This empirical law of course implies that the tip
size always remains finite, although in practice it soon
reaches molecular scales.

If � is finite, the tip breaks owing to the interior pressure
building up over a finite region near the tip. In agreement
with Taylor’s theory, valid for small �, this occurs via a
saddle-node bifurcation, even if � is not small �25,41�. For
both drops �1� and in the selective withdrawal experiment
�5�, the structure observed after the bifurcation is a “spout,”
i.e., a thin jet emanating from the tip. Unstable stationary
states found beyond the bifurcation are reminiscent of jetting
states, but it is not clear the two structures are directly re-
lated. While unstable states are surely relevant to the tran-
sient dynamics right after the bifurcation, it is not clear that
they also correspond to states that develop in the long time
limit.

As far as comparison to experiment is concerned, the
greatest unresolved question concerns the critical capillary
number of the transition in the selective withdrawal experi-
ment �5,6�. In the experiment performed with an air-fluid
system, for which � is 10−7, no transition is ever observed
�2�, in agreement with the present simulations. In experi-
ments with a two-fluid system, however, the tip curvature at
the transition is found to be almost independent of �, even if
� was varied between 1 and 10−3. As explained in Sec. III B,
this is in disagreement with the destabilizing mechanism ob-
served for drops, since the absence of a volume constraint
should not play a role. In conclusion, much remains to be
done some 70 years after Taylor’s original work.
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